Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)

Вниз   Решение


Автор: Белухов Н.

В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих:  $a - b,  b - a$  или  $a + b$.  Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно  $20a - 18b$.

Вверх   Решение

Задача 57239
Тема:    [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Постройте квадрат, три вершины которого лежат на трёх данных параллельных прямых.

Решение

Пусть a, b, c — данные прямые, причём прямая b лежит между a и c. Предположим, что вершины A, B, C квадрата ABCD лежат на прямых a, b, c соответственно.

Первое решение. Из того, что $ \angle$ABC = 90o и AB = BC вытекает следующее построение. Возьмём на прямой b произвольную точку B и повернём прямую a относительно точки B на 90o (в одну или в другую сторону). Точка C — это точка пересечения прямой c и образа прямой a при указанном повороте.

Второе решение. Возьмём на прямой b произвольную точку B и опустим из неё перпендикуляр BA1 на прямую a и перпендикуляр BC1 на прямую c. Прямоугольные треугольники BA1A и CC1B имеют равные гипотенузы и равны углы, поэтому они равны. Из этого вытекает следующее построение. На прямой a строим отрезок A1A, равный отрезку BC1. Мы построили вершину A. Вершина C строится аналогично.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 8
Название Построения
Тема Построения
параграф
Номер 7
Название Четырехугольники
Тема Четырехугольники (построения)
задача
Номер 08.045B-

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .