ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57537
Темы:    [ Экстремальные точки треугольника ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема синусов ]
[ Вписанный угол, опирающийся на диаметр ]
[ Наибольшая или наименьшая длина ]
Сложность: 4
Классы: 9,10
В корзину
Прислать комментарий

Условие

Из точки M описанной окружности треугольника ABC опущены перпендикуляры MP и MQ на прямые AB и AC. При каком положении точки M длина отрезка PQ максимальна?

Решение

Точки P и Q лежат на окружности с диаметром AM, поэтому PQ = AM sin PAQ = AM sin A. Значит, длина отрезка PQ максимальна, когда AM — диаметр описанной окружности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 2
Название Экстремальные точки треугольника
Тема Экстремальные точки треугольника
задача
Номер 11.017

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .