ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57554
Тема:    [ Четырехугольники (экстремальные свойства) ]
Сложность: 6
Классы: 9
В корзину
Прислать комментарий

Условие

Докажите, что среди всех четырехугольников с фиксированными длинами сторон наибольшую площадь имеет вписанный четырехугольник.

Решение

Согласно задаче 4.45, а)

S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2).

Эта величина максимальна, когда cos((B + D)/2) = 0, т. е. $ \angle$B + $ \angle$D = 180o.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 4
Название Четырехугольники
Тема Четырехугольники (экстремальные свойства)
задача
Номер 11.034

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .