ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Две окружности радиусов R и r пересекаются в точках A и B и касаются прямой в точках C и D; N — точка пересечения прямых AB и CD (B между A и N). Найдите: 1) радиус окружности, описанной около треугольника ACD; 2) отношение высот треугольников NAC и NAD, опущенных из вершины N.
Меньшая сторона прямоугольника равна 1, острый угол между диагоналями равен 60o. Найдите радиус окружности, описанной около прямоугольника.
Пусть O — центр окружности, описанной около треугольника ABC ,
В треугольной пирамиде два противоположных ребра равны 12 и 4, а остальные рёбра равны 7. В пирамиду вписана сфера. Найдите расстояние от центра сферы до ребра, равного 12. |
Задача 57568
Условиеа) Докажите, что среди всех n-угольников, вписанных в данную
окружность, наибольшую площадь имеет правильный n-угольник.
Решениеа) Обозначим длину стороны правильного n-угольника, вписанного в
данную окружность, через an. Рассмотрим произвольный неправильный
n-угольник, вписанный в эту окружность. У него обязательно
найдется сторона длиной меньше an. А вот стороны длиной больше an
у него может и не быть, но тогда этот многоугольник можно заключить
в сегмент, отсекаемый стороной правильного n-угольника. Так
как при симметрии относительно стороны правильного n-угольника
сегмент, отсекаемый этой стороной, попадает внутрь n-угольника,
площадь n-угольника больше площади сегмента. Поэтому можно считать,
что у рассматриваемого n-угольника есть сторона длиной
меньше an и сторона длиной больше an.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке