ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что геометрическое место точек пересечения диагоналей
четырехугольников ABCD, у которых стороны AB и CD лежат на
двух данных прямых l1 и l2, а стороны
BC и AD пересекаются в данной точке P, является прямой,
проходящей через точку Q пересечения прямых l1 и l2.
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3 |
Задача 57598
УсловиеОкружности радиусов ta, tb, tc касаются внутренним образом описанной окружности треугольника ABC в его вершинах A, B, C и касаются друг друга внешним образом. Докажите, что
ta =
РешениеПусть O — центр описанной окружности. Применив теорему косинусов к
треугольнику AOB, получим
cos 2
(R - ta)2 + (R - tb)2 - 2(R - ta)(R - tb)
поэтому
т.е. c2 =
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке