ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57624
Тема:    [ Синусы и косинусы углов треугольника ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

α, β и γ - углы треугольника ABC. Докажите, что
а)  sin2$ \alpha$ + sin2$ \beta$ + sin2$ \gamma$ = (p2 - r2 - 4rR)/2R2.
б)  4R2cos$ \alpha$cos$ \beta$cos$ \gamma$ = p2 - (2R + r)2.

Решение

а) Ясно, что  sin2$ \alpha$ + sin2$ \beta$ + sin2$ \gamma$ = (a2+b2+c2)/4R и  a2 + b2 + c2 = (a+b+c)2 - 2(ab + bc + ca) = 4p2 - 2(r2 + p2 + 4rR) (см. задачу 12.30).
б) Согласно задаче 12.39, б)  2 cos$ \alpha$cos$ \beta$cos$ \gamma$ = sin2$ \alpha$ + sin2$ \beta$ + sin2$ \gamma$ - 2. Остается воспользоваться результатом задачи а).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 5
Название Синусы и косинусы углов треугольника
Тема Синусы и косинусы углов треугольника
задача
Номер 12.041

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .