Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Три окружности с центрами A, B, C, касающиеся друг друга и прямой l, расположены так, как показано на рис. Пусть a, b и c — радиусы окружностей с центрами A, B, C. Докажите, что  1/$ \sqrt{c}$ = 1/$ \sqrt{a}$ + 1/$ \sqrt{b}$.
б) Четыре окружности попарно касаются внешним образом (в шести различных точках). Пусть a, b, c, d — их радиусы,  $ \alpha$ = 1/a,$ \beta$ = 1/b,$ \gamma$ = 1/c и  $ \delta$ = 1/d. Докажите, что 2($ \alpha^{2}_{}$ + $ \beta^{2}_{}$ + $ \gamma^{2}_{}$ + $ \delta^{2}$) = ($ \alpha$ + $ \beta$ + $ \gamma$ + $ \delta$)2.


   Решение

Задача 57625
Тема:    [ Синусы и косинусы углов треугольника ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

α, β и γ - углы треугольника ABC. Докажите, что
ab cos$ \gamma$ + bc cos$ \alpha$ + ca cos$ \beta$ = (a2 + b2 + c2)/2.

Решение

Теорему косинусов можно переписать в виде  ab cos$ \gamma$ = (a2 + b2 - c2)/2. Складывая три аналогичных равенства, получаем требуемое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 5
Название Синусы и косинусы углов треугольника
Тема Синусы и косинусы углов треугольника
задача
Номер 12.042

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .