ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57626
Тема:    [ Синусы и косинусы углов треугольника ]
Сложность: 3+
Классы: 9
В корзину
Прислать комментарий

Условие

Пусть α, β и γ - углы треугольника ABC. Докажите, что
$ {\frac{\cos^2(\alpha /2)}{a}}$ + $ {\frac{\cos^2(\beta /2)}{b}}$ + $ {\frac{\cos^2(\gamma /2)}{c}}$ = $ {\frac{p}{4Rr}}$.

Решение

Согласно задаче 12.13  cos2($ \alpha$/2)/a = p(p - a)/abc. Остается заметить, что  p(p - a) + p(p - b) + p(p - c) = p2 и  abc = 4SR = 4prR.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 5
Название Синусы и косинусы углов треугольника
Тема Синусы и косинусы углов треугольника
задача
Номер 12.043

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .