ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Плоскость раскрашена в семь цветов. Обязательно
ли найдутся две точки одного цвета, расстояние между
которыми равно 1?
ABC - прямоугольный треугольник с прямым углом C. Докажите, что
c/r Постройте рациональную параметризацию окружности x2 + y2 = 1, проведя прямые
через точку (1, 0).
В треугольнике ABC проведена медиана AM.
Докажите, что
2AM
Володя решил стать великим писателем. Для этого он каждой букве русского языка сопоставил слово, содержащее эту букву. Потом написал слово, сопоставленное букве "A". Дальше каждую букву в нем заменил на сопоставленное ей слово (разделяя слова пробелами), потом в получившемся тексте вновь заменил каждую букву на сопоставленное ей слово, и так всего 40 раз. Володин текст начинается так: "РЯД КОРАБЛЕЙ НА ДРЕМЛЮЩИХ МОРЯХ". Докажите, что этот оборот встречается в Володином тексте еще хотя бы раз. Докажите, что выпуклый пятиугольник ABCDE с равными
сторонами, углы которого удовлетворяют неравенствам
В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC. Все клетки квадратной таблицы n×n пронумерованы в некотором порядке числами от 1 до n². Петя делает ходы по следующим правилам. Первым ходом он ставит фишку в любую клетку. Каждым последующим ходом Петя может либо поставить новую фишку на какую-то клетку, либо переставить фишку из клетки с номером a ходом по горизонтали или по вертикали в клетку с номером большим, чем a. Каждый раз, когда фишка попадает в клетку, эта клетка немедленно закрашивается; ставить фишку на закрашенную клетку запрещено. Какое наименьшее количество фишек потребуется Пете, чтобы независимо от исходной нумерации он смог за несколько ходов закрасить все клетки таблицы? Вписанная окружность треугольника ABC касается
сторон AC и BC в точках B1 и A1. Докажите, что если
AC > BC, то AA1 > BB1.
|
Задача 57884
УсловиеВписанная окружность треугольника ABC касается
сторон AC и BC в точках B1 и A1. Докажите, что если
AC > BC, то AA1 > BB1.
РешениеПусть точка B' симметрична B относительно биссектрисы
угла ACB. Тогда
B'A1 = BB1, т. е. требуется проверить,
что
B'A1 < AA1. Для этого достаточно заметить, что
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке