|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Задача 57907
УсловиеДан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sinРешениеПусть точка A1 симметрична точке A относительно прямой BC. Тогда SBC(A1) = A, а при симметриях относительно прямых AB и AC точка A остаётся на месте. Поэтому преобразование S переводит точку A1 в A. Аналогично проверяется, что преобразование S переводит точку B в точку B1, симметричную B относительно прямой AC.Согласно задаче 17.37 преобразование S является скользящей симметрией. Ось этой скользящей симметрии проходит через середины отрезков AA1 и BB1, т.е. через основания высот AH1 и BH2. Длина вектора переноса равна длине проекции отрезка AH1 на прямую H1H2. Угол между прямыми AH1 и H1H2 равен 90o - Замечание. Если Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|