ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58024
Тема:    [ Центр поворотной гомотетии ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

Четыре пересекающиеся прямые образуют четыре треугольника. Докажите, что четыре окружности, описанные около этих треугольников, имеют одну общую точку.

Решение

Пусть прямые AB и DE пересекаются в точке C, а прямые BD и AE — в точке F. Центром поворотной гомотетии, переводящей отрезок AB в отрезок ED, является точка пересечения описанных окружностей треугольников AEC и BDC, отличная от точки C (см. задачу 19.41), а центром поворотной гомотетии, переводящей AE в BD, — точка пересечения описанных окружностей треугольников ABF и EDF. Согласно задаче 19.44 центры этих поворотных гомотетий совпадают, т. е. все четыре описанные окружности имеют общую точку.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 6
Название Центр поворотной гомотетии
Тема Центр поворотной гомотетии
задача
Номер 19.045

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .