ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58065
Тема:    [ Наибольший треугольник ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

Докажите, что если центр вписанной окружности четырехугольника совпадает с точкой пересечения диагоналей, то четырехугольник — ромб.

Решение

Пусть O — точка пересечения диагоналей четырехугольника ABCD. Для определенности можно считать, что AO$ \ge$CO и DO$ \ge$BO. Пусть точки B1 и C1 симметричны точкам B и C относительно точки O. Так как точка O является центром вписанной окружности четырехугольника, то отрезок B1C1 касается этой окружности. Поэтому отрезок AD может касаться этой окружности, только если B1 = D и C1 = A, т. е. если ABCD — параллелограмм. В этот параллелограмм можно вписать окружность, поэтому он — ромб.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 20
Название Принцип крайнего
Тема Принцип крайнего
параграф
Номер 4
Название Наибольший треугольник
Тема Наибольший треугольник
задача
Номер 20.019

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .