ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58098
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.

Решение

Разрежем отрезок на десять отрезков длиной 0, 1, сложим их стопочкой и спроецируем на такой же отрезок (рис.). Так как расстояние между любыми двумя окрашенными точками не равно 0, 1, то окрашенные точки соседних отрезков не могут проецироваться в одну точку. Поэтому ни в одну точку не могут проецироваться окрашенные точки более чем пяти отрезков. Следовательно, сумма длин проекций окрашенных отрезков (равная сумме их длин) не превосходит 5 . 0, 1 = 0, 5.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 2
Название Углы и длины
Тема Принцип Дирихле (углы и длины)
задача
Номер 21.019

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .