ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58101
Темы:    [ Принцип Дирихле (площадь и объем) ]
[ Площадь круга, сектора и сегмента ]
[ Площади криволинейных фигур ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 9,10
В корзину
Прислать комментарий

Условие

В квадрате со стороной 15 расположено 20 попарно непересекающихся квадратиков со стороной 1. Докажите, что в большом квадрате можно разместить круг радиуса 1 так, чтобы он не пересекался ни с одним из квадратиков.

Решение

Рассмотрим фигуру, состоящую из всех точек, удаленных от квадратика со стороной 1 на расстояние не больше 1 (рис.). Ясно, что круг радиуса 1, центр которого расположен вне этой фигуры, не пересекается с квадратиком. Площадь такой фигуры равна $ \pi$ + 5. Центр нужного круга должен также находиться на расстоянии больше 1 от сторон большого квадрата, т. е. внутри квадрата со стороной 13. Ясно, что 20 фигур площадью $ \pi$ + 5 не могут покрыть квадрат со стороной 13, так как 20($ \pi$ + 5) < 132. Круг с центром в непокрытой точке обладает требуемым свойством.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 3
Название Площадь
Тема Принцип Дирихле (площадь и объем)
задача
Номер 21.022

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .