ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58105
Темы:    [ Принцип Дирихле (площадь и объем) ]
[ Площадь круга, сектора и сегмента ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 6-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В круге радиуса 16 расположено 650 точек. Докажите, что найдется кольцо с внутренним радиусом 2 и внешним радиусом 3, в котором лежит не менее 10 из данных точек.

Решение

Заметим сначала, что точка X принадлежит кольцу с центром O тогда и только тогда, когда точка O принадлежит такому же кольцу с центром X. Поэтому достаточно доказать, что если построить кольца с центрами в данных точках, то одну из точек рассматриваемого круга покроет не менее 10 колец. Рассматриваемые кольца лежат внутри круга радиуса 16 + 3 = 19, площадь которого равна 361$ \pi$. Остается заметить, что 9 . 361$ \pi$ = 3249$ \pi$, а суммарная площадь колец равна 650 . 5$ \pi$ = 3250$ \pi$.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 3
Название Площадь
Тема Принцип Дирихле (площадь и объем)
задача
Номер 21.026

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .