ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58241
УсловиеДокажите, что следующие свойства выпуклого многоугольника F эквивалентны: 1) F имеет центр симметрии; 2) F можно разрезать на параллелограммы.РешениеРассмотрим выпуклый многоугольник A1...An. Докажем, что каждое из свойств 1 и 2 эквивалентно свойству 3: "Для любого вектора найдется вектор = - ."Ясно, что из свойства 1 следует свойство 3. Докажем, что из свойства 3 следует свойство 1. Если выпуклый многоугольник A1...An обладает свойством 3, то n = 2m и = - . Пусть Oi — середина отрезка AiAm + i. Так как AiAi + 1Am + iAm + i + 1 — параллелограмм, то Oi = Oi + 1. Поэтому все точки Oi совпадают, и эта точка является центром симметрии многоугольника. Докажем, что из свойства 2 следует свойство 3. Пусть выпуклый многоугольник F разрезан на параллелограммы. Нужно доказать, что для любой стороны многоугольника F найдется другая сторона, параллельная и равная ей. От каждой стороны многоугольника F отходит цепочка параллелограммов, т. е. эта сторона как бы перемещается по ним параллельно, причем она может разбиваться на несколько частей (рис.). Так как у выпуклого многоугольника может быть еще только одна сторона, параллельная данной, то все разветвления цепочки упираются в одну и ту же сторону, причем ее длина не меньше длины стороны, из которой цепочка выходит. Мы можем выпустить цепочку параллелограммов как из первой стороны во вторую, так и из второй в первую, поэтому длины этих сторон равны. Остается доказать, что из свойства 3 следует свойство 2. Способ разрезания многоугольника с равными и параллельными противоположными сторонами указан на рис. После каждой такой операции получаем многоугольник с меньшим числом сторон, по-прежнему обладающий свойством 3, и проделываем с ним то же самое, пока не придем к параллелограмму. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|