Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны несколько точек, никакие три из которых не лежат на одной прямой. Некоторые точки соединены отрезками. Известно, что любая прямая, не проходящая через данные точки, пересекает чётное число отрезков. Докажите, что из каждой точки выходит чётное число отрезков.

   Решение

Задача 60904
Темы:    [ Теория игр (прочее) ]
[ Двоичная система счисления ]
Сложность: 4-
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Коля Васин задумал число от 1 до 31 включительно и выбрал из 5 данных карточек

1 3 5 7
9 11 13 15
17 19 21 23
25 27 29 31
    
2 3 6 7
10 11 14 15
18 19 22 23
26 27 30 31
    
4 5 6 7
12 13 14 15
20 21 22 23
28 29 30 31

8 9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
    
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
те, на которых это число присутствует. Как, зная эти карточки, угадать задуманное число? Какими должны быть карточки, чтобы по ним можно было угадывать числа от 1 до 63?


Ответ

Для нахождения числа нужно сложить первые числа с выбранных карточек. Например, если загадано число 23, то потребуется сложить числа 1, 2, 4 и 16.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 5
Название Числа, дроби, системы счисления
Тема Системы счисления
параграф
Номер 3
Название Двоичная и троичная системы счисления
Тема Двоичная система счисления
задача
Номер 05.066

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .