ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Правильный (2n+1)-угольник разбили диагоналями на 2n – 1 треугольник. Докажите, что среди них по крайней мере три равнобедренных. В равнобедренном треугольнике MPK с основанием PM ∠P = arctg 5/12. Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и AP = 6/5. Найдите площадь треугольника HAE. Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969. Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны. |
Задача 64477
УсловиеОбщие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны. РешениеПусть K, L, M, N – точки на сторонах AB, BC, CD, DA пространственного четырёхугольника ABCD, являющиеся основаниями общих перпендикуляров. При проекции на плоскость, параллельную KM и LN, эти прямые перейдут в перпендикулярные прямые K'M' и L'N'. По теореме о трёх перпендикулярах проекции прямых AB и CD будут перпендикулярны K'M', а проекции прямых BC и AD перпендикулярны L'N'. Следовательно, четырёхугольник ABCD проецируется в прямоугольник A'B'C'D', причём A'K' = D'M', B'L' = A'N'. Значит, AK : KB = DM : MC, BL : LC = AN : ND. Пусть P и Q – соответственно точки пересечения KL и MN с AC. По теореме Менелая Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке