ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся) так, что их длины – 1, 2, 3, ... , 50, а их концы – все целые точки от 1 до 100 включительно? Даны три прямые a, b, c. Пусть
T = SaoSboSc. Докажите, что ToT — параллельный перенос
(или тождественное отображение).
|
Задача 64490
УсловиеСреди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами. Решение Из условия следует, что рыцарей – не менее четырёх. Заметим, что у рыцаря не может быть более двух друзей, иначе найдутся четыре рыцаря, у которых есть общий враг, но тогда у этого врага будет не менее четырёх врагов, что противоречит условию. Значит, у каждого рыцаря не более двух друзей и ровно три врага, следовательно, всего рыцарей – не более шести. Ответn = 4 или n = 6. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке