ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри параллелограмма ABCD взята такая точка P, что ∠PDA = ∠PBA. Пусть Ω – вневписанная окружность треугольника PAB, лежащая против вершины A, а ω – вписанная окружность треугольника PCD. Докажите, что одна из общих касательных к Ω и ω параллельна AD. Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7? В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что M ≥ N. |
Задача 64517
УсловиеВ ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что M ≥ N. РешениеЕсли в ряду есть две единицы подряд, вычеркнем их. При этом разность M – N не изменится: число "чётных" пар с одной единицей равно числу "нечётных" пар с другой; а на чётности пар, куда эти единицы не входят, это не повлияет. Также можно стереть и два нуля, стоящих подряд. Продолжая эти стирания, мы придём к ряду (возможно, пустому), где нули и единицы чередуются. Но у такого ряда N = 0. Замечания4 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке