ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 64509

Темы:   [ Выпуклые многоугольники ]
[ Четность и нечетность ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10

В выпуклом 2009-угольнике проведены все диагонали. Прямая пересекает 2009-угольник, но не проходит через его вершины.
Докажите, что прямая пересекает чётное число диагоналей.

Прислать комментарий     Решение

Задача 111643

Темы:   [ Теория множеств (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 8,9

В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.

Прислать комментарий     Решение

Задача 111644

Темы:   [ Арифметическая прогрессия ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.

Прислать комментарий     Решение

Задача 64510

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Пусть a^b обозначает число ab. В выражении  7^7^7^7^7^7^7  надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
Можно ли расставить эти скобки двумя разными способами так, чтобы получилось одно и то же число?

Прислать комментарий     Решение

Задача 64511

Темы:   [ Десятичная система счисления ]
[ Раскладки и разбиения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Замятин В.

Володя хочет сделать набор кубиков одного размера и написать на каждой грани каждого кубика по одной цифре так, чтобы можно было из этих кубиков выложить любое 30-значное число. Какого наименьшего количества кубиков ему для этого хватит? (Цифры 6 и 9 при переворачивании не превращаются друг в друга.)

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .