Страница: 1 [Всего задач: 5]
Задача
64509
(#1)
|
|
Сложность: 3 Классы: 8,9,10
|
В выпуклом 2009-угольнике проведены все диагонали. Прямая пересекает 2009-угольник, но не проходит через его вершины.
Докажите, что прямая пересекает чётное число диагоналей.
Задача
64510
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть a^b обозначает число ab. В выражении 7^7^7^7^7^7^7 надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
Можно ли расставить эти скобки двумя разными способами так, чтобы получилось одно и то же число?
Задача
64511
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
Володя хочет сделать набор кубиков одного размера и написать на каждой грани каждого кубика по одной цифре так, чтобы можно было из этих кубиков выложить любое 30-значное число. Какого наименьшего количества кубиков ему для этого хватит? (Цифры 6 и 9 при переворачивании не превращаются друг в друга.)
Задача
64512
(#4)
|
|
Сложность: 3+ Классы: 8,9,10
|
Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?
Задача
64513
(#5)
|
|
Сложность: 4- Классы: 8,9,10
|
В ромбе ABCD ∠А = 120°. На сторонах BC и CD взяты точки M и N так, что ∠NAM = 30°.
Докажите, что центр описанной окружности треугольника NAM лежит на диагонали ромба.
Страница: 1 [Всего задач: 5]