Страница: 1 [Всего задач: 5]
В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши
разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.
Даны пятьдесят различных натуральных чисел, двадцать пять из которых
не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел.
В окружность радиуса 2 вписан остроугольный треугольник A1A2A3. Докажите, что на дугах A1A2, A2A3, A3A1 можно отметить по одной точке (B1, B2, B3 соответственно) так, чтобы площадь шестиугольника A1B1A2B2A3B3 численно равнялась периметру треугольника A1A2A3.
Даны три различных натуральных числа, одно из которых равно полусумме двух других.
Может ли произведение этих трёх чисел являться точной 2008-й степенью натурального числа?
Несколько спортсменов стартовали одновременно с одного и того же конца
прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца
дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем
разворачивается на другом конце, и т.д. В какой-то момент все спортсмены
снова оказались в одной точке. Докажите, что такие встречи всех будут
продолжаться и впредь.
Страница: 1 [Всего задач: 5]