ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111646
Темы:    [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Даны три различных натуральных числа, одно из которых равно полусумме двух других.
Может ли произведение этих трёх чисел являться точной 2008-й степенью натурального числа?


Решение

Например 6669, 2·6669, 3·6669. Их произведение равно 6·63·669 = 62008.


Ответ

Может.

Замечания

1. 4 балла.

2. Ср. с задачей 111651.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2008/2009
Номер 30
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .