ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 64882
УсловиеОкружности ω1 и ω2 касаются друг друга внешним образом в точке P. Из точки A окружности ω2, не лежащей на линии центров окружностей, проведены касательные AB, AC к ω1. Прямые BP, CP вторично пересекают ω2 в точках E и F. Докажите, что прямая EF, касательная к ω2 в точке A, и общая касательная к окружностям в точке P пересекаются в одной точке. РешениеПри гомотетии с центром P точки B, C переходят в E, F. Значит, A переходит в полюс прямой EF относительно ω2, то есть полюс EF лежит на прямой AP, что равносильно утверждению задачи. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|