ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65047
Темы:    [ Три прямые, пересекающиеся в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

На окружности с диаметром AC выбрана произвольная точка B, отличная от A и C. Пусть M, N – середины хорд AB, BC, а P, Q – середины меньших дуг, стягиваемых этими хордами. Прямые AQ и BC пересекаются в точке K, а прямые CP и AB – в точке L.
Докажите, что прямые MQ, NP и KL пересекаются в одной точке.


Решение

Прямые PM и QN пересекаются в центре окружности O. Поэтому утверждение задачи следует из теоремы Дезарга, применённой к треугольникам PML и NQK.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2011
тур
задача
Номер 21

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .