ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
n отрезков A1 B1 , A2 B2 , ... , An Bn (рис. 5) расположены
на плоскости так, что каждый из них начинается на одной из двух данных
прямых, оканчивается на другой прямой, и проходит через точку G (не
лежащую на данных прямых) — центр тяжести единичных масс, помещенных
в точках A1 , A2 , ... , An . Докажите, что
Квадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой. |
Задача 65639
УсловиеКвадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой. Решение 1 Рассмотрим треугольники AGB и AGF (рис. слева):
AG – общая сторона, GB = GF (равные стороны квадрата BEFG), ∠AGB = AGF = 135° (углы, смежные с углами BGE и FGE, равными по 45°). Следовательно, треугольники AGB и AGF равны по первому признаку. Значит, AB = AF = AD, Решение 2 Опустим перпендикуляры AK и AL на прямые EF и EB соответственно (рис. справа). Достаточно доказать, что на одной прямой лежат точки D, K и F. Четырёхугольник AKEL – квадрат, так как три его угла – прямые, а диагональ EG – биссектриса угла E. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке