Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

У золотоискателя есть куча золотого песка массой 37 кг (и больше песка у него нет), двуxчашечные весы и две гири 1 и 2 кг. Золотоискатель умеет делать действия двух типов:

  • уравнивать весы, т.е. если сейчас весы не в равновесии, то он может пересыпать часть песка с одной чаши на другую так, чтобы весы встали в равновесие;
  • досыпать до равновесия, т.е. если сейчас весы не в равновесии, то он может добавить песка на одну из чаш так, чтобы весы встали в равновесие.
  • Конечно, каждое из этих действий он может сделать только если для этого у него хватает песка.

    Как ему за два действия с весами получить кучку, в которой ровно 26 кг песка? Смешать две кучки песка, а также просто ставить что-то на весы действием не считается.

    Вниз   Решение


    Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

    ВверхВниз   Решение


    Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$

    ВверхВниз   Решение


    Найдите все действительные значения a и b, при которых уравнения  x³ + ax² + 18 = 0,   x³ + bx + 12 = 0  имеют два общих корня, и определите эти корни.

    ВверхВниз   Решение


    Даны 10 натуральных чисел, не превышающих 91. Докажите, что отношение некоторых двух из этих чисел принадлежит отрезку  [2/3, 3/2].

    ВверхВниз   Решение


    На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

    Вверх   Решение

    Задача 65874
    Темы:    [ Системы линейных уравнений ]
    [ Системы алгебраических нелинейных уравнений ]
    [ Системы алгебраических неравенств ]
    [ Алгебраические неравенства (прочее) ]
    Сложность: 3
    Классы: 8,9,10
    Из корзины
    Прислать комментарий

    Условие

    На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?


    Решение

      Все искомые числа различны, иначе на карточках некоторые числа были бы равны. Так как их попарные произведения положительны, то все числа одного знака, а так как их попарные суммы положительны, то этот знак – плюс.
      Обозначим искомые числа  x < y < z.

      Первый способ. Для карточек каждого цвета рассмотрим отношение наибольшего числа на них к наименьшему. В одном случае – это  y+z/x+y, в другом – x/y. Так как первое отношение меньше второго, то понятно, на каких карточках написаны суммы, а на каких – произведения.
      Знание попарных сумм трёх чисел определяет эти числа, например,  x = ½ ((x + y) + (x + z) – (y + z)).

      Второй способ. Заметим, что  x + y < x + z < y + z  и  xy < xz < yz.  Пусть  a < b < c  – числа на карточках одного цвета,  A < B < C  – другого. Тогда     Аналогично вычисляются y и z.


    Ответ

    Всегда.

    Замечания

    1. 8 баллов.

    2. Ср. с задачей 65880.

    Источники и прецеденты использования

    олимпиада
    Название Турнир городов
    номер/год
    Номер 38
    Дата 2016/17
    вариант
    Вариант осенний тур, сложный вариант, 8-9 класс
    задача
    Номер 5

    © 2004-... МЦНМО (о копирайте)
    Пишите нам

    Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .