Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AB = AC)  угол A равен α. На стороне AB взята точка D так, что  AD = AB/n.  Найдите сумму  n – 1  углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
  а) при  n = 3;
  б) при произвольном n.

Вниз   Решение


Автор: Фольклор

Известно, что  5(а – 1) = b + a².  Сравните числа а и b.

ВверхВниз   Решение


Даны натуральное число  n > 3  и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство  

ВверхВниз   Решение


Найдите наименьшее значение функции y = (x-21)ex-20 на отрезке [19;21] .

ВверхВниз   Решение


Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.

Вверх   Решение

Задача 66099
Темы:    [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.


Решение

Пусть это число n имеет  k + 4  цифры. Тогда  2016·10kn < 2017·10k.  Так как n делится на 2017, то  n ≤ 2017·10k – 2017.  Следовательно,
2017 ≤ (2017 – 2016)·10k = 10k,  то есть  k ≥ 4.  Поэтому наименьшее такое число равно  20170000 – 4·2017.


Ответ

20161932.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Номер 38
Дата 2016/17
вариант
Вариант весенний тур, базовый вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .