ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равнобедренном треугольнике ABC (AB = AC) угол A равен α. На стороне AB взята точка D так, что AD = AB/n. Найдите сумму n – 1 углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей: Известно, что 5(а – 1) = b + a². Сравните числа а и b. Даны натуральное число n > 3 и положительные числа x1, x2, ..., xn, произведение которых равно 1. Найдите наименьшее значение функции y = (x-21)ex-20 на отрезке [19;21] . Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017. |
Задача 66099
УсловиеНайдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017. РешениеПусть это число n имеет k + 4 цифры. Тогда 2016·10k ≤ n < 2017·10k. Так как n делится на 2017, то n ≤ 2017·10k – 2017. Следовательно, Ответ20161932. Замечания3 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке