ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 66099  (#1)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 7,8,9

Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.

Прислать комментарий     Решение

Задача 66100  (#2)

Темы:   [ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка  (p, q),  что трёхчлен  x² + px + q  также имеет ровно один корень.

Прислать комментарий     Решение

Задача 66101  (#3)

Темы:   [ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если  ∠A = 60°,  то траектория шарика проходит через центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 66102  (#4)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?

Прислать комментарий     Решение

Задача 66103  (#5)

Темы:   [ Невыпуклые многоугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

а) На каждой стороне десятиугольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной десятиугольника?
б) Решите ту же задачу для одиннадцатиугольника.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .