ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 66474
УсловиеДокажите, что для любых натуральных a1, a2, ..., ak
таких, что , у уравнения
не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число,
не превосходящее x.) РешениеОбозначим . Предположим, что натуральное число n является решением уравнения из условия задачи. Пусть ri – это остаток от деления n на ai, иными словами, . Тогда откуда .Таким образом, при заданном наборе чисел (r1, ..., rk), удовлетворяющих условиям 0 ≤ ri < ai, может быть не более одного натурального решения n с таким набором остатков. Всего таких наборов ровно a1a2...ak, поэтому и количество решений уравнения не больше a1a2...ak. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|