ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 66779
УсловиеМортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?
РешениеРассмотрим любые четыре из отмеченных точек. Если они образуют выпуклый четырехугольник $ABCD$, то $S_{ABC}+S_{ACD}=S_{ABD}+S_{BCD}$. Если же одна из точек лежит внутри треугольника, образованного тремя другими, то площадь этого треугольника равна сумме площадей трех внутренних. Таким образом, в любом случае сумма площадей четырех треугольников с вершинами в рассматриваемых точках будет четной. Если просуммировать такие суммы по всем четверкам, то площадь каждого треугольника будет посчитана трижды, следовательно, сумма площадей всех 20 треугольников также четна. ОтветНет. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке