ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67063
Темы:    [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Признаки делимости на 5 и 10 ]
Сложность: 3
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?


Решение

Запишем исходное число в виде $2^km$, где $m$ нечётно. После  $k + 1$  умножения на 5 получится число, оканчивающееся на $k$ нулей, перед которыми стоит пятёрка, и она сохранится при дальнейших умножениях.


Ответ

Верно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
год/номер
Номер 43
Дата 2021/22
вариант
Вариант весенний тур, базовый вариант, 8-9 класс
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .