|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На стороне BC треугольника ABC взята точка A1 так, что BA1 : A1C = 2 : 1. В каком отношении медиана CC1 делит отрезок AA1? |
Задача 67211
УсловиеПусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.РешениеВысоты треугольника $ABC$ являются биссектрисами углов треугольника $A_1B_1C_1$, которые перпендикулярны сторонам треугольника $A_2B_2C_2$, поэтому треугольники $ABC$ и $A_2B_2C_2$ гомотетичны. Центр гомотетии лежит на прямой, соединяющей центры описанных окружностей треугольников, т.е. прямой Эйлера треугольника $ABC$.Источники и прецеденты использования
|
|||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|