ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли такие две функции f и g, принимающие только целые значения, что для любого целого x выполнены соотношения: Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности? а) Докажите, что при переходе от невыпуклого
многоугольника к его выпуклой оболочке периметр уменьшается.
(Выпуклой оболочкой многоугольника называют наименьший выпуклый
многоугольник, его содержащий.)
Натуральное число n разрешается заменить на число ab, если a + b = n и числа a и b натуральные. В комнате у Папы Карло на каждой стене висят часы, причём они все показывают неверное время: первые часы ошибаются на 2 минуты, вторые – на 3 минуты, третьи – на 4 минуты и четвёртые – на 5 минут. Однажды Папа Карло, выходя на улицу, решил узнать точное время и увидел такие показания часов: 14:54, 14:57, 15:02 и 15:03. Помогите Папе Карло определить точное время. Докажите, что в любом треугольнике сумма медиан
больше 3/4 периметра, но меньше периметра.
Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета? На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин. |
Задача 73617
УсловиеНа кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.
РешениеНаиболее бесхитростное доказательство — индукцией по числу n автомашин — проводится так. Случай n=1 очевиден. Предположим, что для n машин утверждени е доказано. Пусть машин n+1. Тогда среди них найдется такая машина A, которая может, пользуясь лишь имеющимся в ней бензином, доехать до следующей машины B (это легко доказывается "от противного") Выльем из машины B бензин в A, и уберем B с дороги. Среди оставшихся n машин, по предположению индукции, найдется такая, которая может объехать всю дорогу, забирая по пути бензин у остальных автомашин. Ясно, что та же машина может сделать это и в первоначальной ситуации, когда на дороге n+1 машина: на участке от A до B у нее заведомо хватит бензина (из машины A), а на остальных участках у нее ровно столько же бензина, сколько в случае n машин.
Многие читатели заметили, что задача сводится к такой:
ЗамечанияСр. с задачей 73656. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке