ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Имеется две кучки камней - по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.
Диагонали AD, BE и CF шестиугольника ABCDEF пересекаются
в одной точке. Пусть A' — точка пересечения прямых AC и
FB, B' — точка пересечения BD и AC, C' — точка
пересечения CE и BD. Докажите, что точки пересечения прямых
A'B' и D'E', B'C' и E'F', C'D' и F'A' лежат на одной
прямой.
Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой. |
Задача 76467
Условие
Построить окружность, равноудалённую от четырёх точек плоскости. Сколько
решений имеет задача?
РешениеОтвет: 7 решений (в невырожденном случае).
Пусть A, B, C, D — данные точки, S — искомая окружность. По одну
сторону от S лежит k данных точек, по другую сторону лежит 4 - k данных
точек. Мы будем предполагать, что данные точки не лежат на одной окружности
(иначе в качестве S можно взять любую окружность с тем же центром; получается
бесконечно много решений). Таким образом,
1 Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке