ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 76518
Темы:    [ Повороты на $60^\circ$ и $120^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На прямой даны 3 точки A, B, C. На отрезке AB построен равносторонний треугольник ABC1, на отрезке BC построен равносторонний треугольник BCA1. Точка M — середина отрезка AA1, точка N — середина отрезка CC1. Доказать, что треугольник BMN — равносторонний. (Точка B лежит между точками A и C; точки A1 и C1 расположены по одну сторону от прямой AB.)

Решение

При повороте на угол 60o вокруг точки B отрезок CC1 переходит в отрезок A1A, поэтому точка N переходит в точку M.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 9
Год 1946
вариант
Класс 7,8
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .