ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78507
Темы:    [ Принцип крайнего (прочее) ]
[ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение  xx + yy = zz + tt.


Решение

Предположим, что такие числа нашлись. Пусть z – наибольшее из этих чисел. Тогда  z ≥ 4,  а значит,  xx + yy < 2(z – 1)z–1 < 2zz–1 < zz < zz + tt.  Противоречие.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 26
Год 1963
вариант
1
Класс 11
Тур 2
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .