Страница: 1 [Всего задач: 5]
Задача
78507
(#1)
|
|
Сложность: 3 Классы: 10,11
|
Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение xx + yy = zz + tt.
Задача
78508
(#2)
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно
выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное
число нулей, либо бесконечное число девяток.
Задача
78509
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
Найти все многочлены P(x), для которых справедливо тождество:
xP(x – 1) ≡ (x – 26)P(x).
Задача
78505
(#4)
|
|
Сложность: 5- Классы: 8,9,10
|
A',
B',
C',
D',
E' — середины сторон выпуклого пятиугольника
ABCDE. Доказать, что площади пятиугольников
ABCDE и
A'B'C'D'E' связаны
соотношением:
SA'B'C'D'E'SABCDE.
Задача
78510
(#5)
|
|
Сложность: 5 Классы: 10,11
|
Доказать, что на сфере нельзя так расположить три дуги больших окружностей в
300
o каждая,
чтобы никакие две из них не имели ни общих точек, ни общих концов.
Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.
Страница: 1 [Всего задач: 5]