ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78570
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Два неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные $ {\frac{1}{1965}}$ части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.

Решение

Возьмём 1965 дисков, раскрашенных так же, как второй из наших дисков, и  положим их на первый диск так, чтобы они занимали все возможные положения. Тогда над каждым окрашенным сектором первого диска расположено 200 окрашенных секторов, т. е. всего имеется 2002 пар совпадающих окрашенных секторов. Пусть имеется n положений второго диска, при которых совпадает не менее 21 пары окрашенных секторов. Тогда число совпадений окрашенных секторов не меньше 21n. Поэтому 21n$ \le$2002, т. е. n$ \le$1904, 8. Так как n — целое число, то n$ \le$1904. Следовательно, по крайней мере при 1965 - 1904 = 61 положениях совпадает не более 20 пар окрашенных секторов.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 1
Название Конечное число точек, прямых и т.д.
Тема Принцип Дирихле (конечное число точек, прямых и т. д.)
задача
Номер 21.007
олимпиада
Название Московская математическая олимпиада
год
Номер 28
Год 1965
вариант
1
Класс 8
Тур 2
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .