Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат разрезан на прямоугольники.
Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.

   Решение

Задача 79363
Темы:    [ Неравенства с площадями ]
[ Свойства частей, полученных при разрезаниях ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8
Из корзины
Прислать комментарий

Условие

Квадрат разрезан на прямоугольники.
Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.


Решение

Пусть s, s1, ..., sn – площади квадрата и составляющих его прямоугольников, S, S1, ..., Sn – площади описанных около них кругов. Если стороны k-го прямоугольника равны a и b, то  Sk = ¼ π(a² + b²). Поэтому  πsk = πab ≤ ½ π(a² + b²) = 2Sk.  Следовательно,  2S = πs = π(s1 + ... + sn) ≤ 2(S1 + ... + Sn).

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 42
Год 1979
вариант
Класс 7
задача
Номер 3
олимпиада
Название Московская математическая олимпиада
год
Номер 42
Год 1979
вариант
Класс 8
задача
Номер 4
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 6
Название Неравенства для площадей
Тема Неравенства с площадями
задача
Номер 09.043

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .