ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!. В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение SAFD : SABC, если AB : AC : BC = 21 : 28 : 20. Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A. Точка M расположена на стороне CD квадрата ABCD с центром O, причём CM : MD = 1 : 2. Математик с пятью детьми зашёл в пиццерию. Угол при вершине A ромба ABCD равен 20°. Точки M и
N – основания перпендикуляров, опущенных из вершины B на
стороны AD и CD. Григорианский календарь. Обыкновенный год содержит 365 дней, високосный – 366. n-й год, номер которого не делится на 100, является високосным тогда и только тогда, когда n кратно 4. n-й год, где n кратно 100, является високосным тогда и только тогда, когда n кратно 400. Так, например, 1996 и 2000 годы високосные, а 1997 и 1900 – нет. Эти правила были установлены папой Григорием XIII. До сих пор мы имели ввиду гражданский год, число дней которого должно быть целым. Астрономическим же годом называется период времени, за который Земля совершает полный оборот вокруг Солнца. Считая, что григорианский год полностью согласован с астрономическим, найдите продолжительность астрономического года. Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол α . Найдите радиус описанного шара.
На плоскости даны две окружности радиусов 4 и 3 с центрами в
точках O1 и O2 , касающиеся некоторой прямой в точках
M1 и M2 и лежащие по разные стороны от этой прямой.
Отношение отрезка O1O2 к отрезку M1M2 равно
Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100. |
Задача 79377
Условие
Доказать, что максимальное количество сторон выпуклого многоугольника, стороны
которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.
РешениеПусть стороны выпуклого n-угольника лежат на диагоналях данного 100-угольника. Для каждой стороны n - угольника рассмотрим диагональ, на которой она лежит, и отметим её концы. Всего будет отмечено 2n точек. Из каждой вершины данного 100-угольника выходит не более двух таких диагоналей, поэтому каждая вершина отмечена не более двух раз. Следовательно, 2n ≤ 2 · 100, т.е. n ≤ 100. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке