ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 79590
УсловиеРешите уравнение (1 + x + x²)(1 + x + ... + x10) = (1 + x + ... + x6)². РешениеУмножим обе стороны уравнения на (1 − x)²: (1 − x³)(1 − x11) = (1 − x7)².После раскрытия скобок, получим − x3 − x11 = − 2x7, или x3(1 − x4)² = 0. Отсюда x = −1, 0 или 1. Корень 1 мог возникнуть из-за умножения на 1 − x, проверкой убеждаемся, что это действительно так. Ответx = −1, 0. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|