ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 86487
Темы:    [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 7,8
В корзину
Прислать комментарий

Условие

Докажите, что   ½ – ⅓ + ¼ – ⅕ + ... + 1/981/99 + 1/100 > ⅕.


Решение

½ – ⅓ + ¼ – ⅕ = ⅙ + 1/20 = 13/60 > 12/60 = ⅕,  а сумма остальных дробей в левой части неравенства положительна.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 16
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
задача
Номер 012
олимпиада
Название Московская математическая регата
год
Год 2000/01
класс
Класс 7
задача
Номер 2.1
кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 7
Название Задачи с числами
задача
Номер 7.4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .