Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

Вниз   Решение


В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение  SAFD : SABC,  если  AB : AC : BC = 21 : 28 : 20.

ВверхВниз   Решение


Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

ВверхВниз   Решение


Точка M расположена на стороне CD квадрата ABCD с центром O, причём  CM : MD = 1 : 2.
Найдите стороны треугольника AOM, если сторона квадрата равна 6.

ВверхВниз   Решение


Математик с пятью детьми зашёл в пиццерию.
  Маша: Мне с помидорами и чтоб без колбасы.
  Ваня: А мне с грибами.
  Даша: Я буду без помидоров.
  Никита: А я с помидорами. Но без грибов!
  Игорь: И я без грибов. Зато с колбасой!
  Папа: Да, с такими привередами одной пиццей явно не обойдёшься...
Сможет ли математик заказать две пиццы и угостить каждого рeбенка такой, какую тот просил, или все же придется три пиццы заказывать?

ВверхВниз   Решение


Угол при вершине A ромба ABCD равен 20°. Точки M и N – основания перпендикуляров, опущенных из вершины B на стороны AD и CD.
Найдите углы треугольника BMN.

ВверхВниз   Решение


Григорианский календарь. Обыкновенный год содержит 365 дней, високосный – 366. n-й год, номер которого не делится на 100, является високосным тогда и только тогда, когда n кратно 4. n-й год, где n кратно 100, является високосным тогда и только тогда, когда n кратно 400. Так, например, 1996 и 2000 годы високосные, а 1997 и 1900 – нет. Эти правила были установлены папой Григорием XIII. До сих пор мы имели ввиду гражданский год, число дней которого должно быть целым. Астрономическим же годом называется период времени, за который Земля совершает полный оборот вокруг Солнца. Считая, что григорианский год полностью согласован с астрономическим, найдите продолжительность астрономического года.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол α . Найдите радиус описанного шара.

Вверх   Решение

Задача 86895
Темы:    [ Векторное произведение ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол α . Найдите радиус описанного шара.

Решение



Рассмотрим сечение правильной треугольной пирамиды ABCP ( P – вершина пирамиды) плоскостью, проходящей через точки P , A и M (центр основания ABC ). В этой плоскости расположен центр описанной сферы, поэтому секущая плоскость пересекает сферу по окружности, радиус которой равен радиусу R описанной сферы. Продолжим отрезок AM за точку M до пересечения с этой окружностью в точке A1 . Тогда равнобедренный треугольник APA1 вписан в окружность радиуса R . Из прямоугольного треугольника PMA находим, что

AP = = ,

а т.к. PA1 = PA , по известной формуле для радиуса описанной окружности (теорема синусов) находим, что
R = = = = .



Рассмотрим сечение правильной треугольной пирамиды ABCP ( P – вершина пирамиды) плоскостью, проходящей через точки P , A и M (центр основания ABC ). В этой плоскости расположен центр описанной сферы, поэтому секущая плоскость пересекает сферу по окружности, радиус которой равен радиусу R описанной сферы. Продолжим отрезок PM за точку M до пересечения с этой окружностью в точке Q . Поскольку PQ – диаметр окружности, PAQ = 90o , а AM – высота прямоугольного треугольника PAQ , проведённая из вершины прямого угла. Значит, MA2 = PM· MQ , или
()2 = tg α (2R- tg α),

Откуда находим, что
R = = .


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7071

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .