ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 87181
Условие
Найдите расстояния между скрещивающимися медианами двух граней
правильного тетраэдра со стороной a .
Решение
Следовательно, Аналогично найдём расстояние между прямыми AK и BE , где E – середина ребра AD . Пусть G и H – ортогональные проекции точек соответственно E и B на плоскость, проходящую через прямую AC перпендикулярно AK . Тогда расстояние между прямыми BE и AK равно перпендикуляру AN , опущенному из вершины A на GH . Далее имеем: Следовательно, Введём прямоугольную систему координат с началом в точке A . Ось x направим по лучу AK (рис.2). Пусть P – проекция точки M на прямую, проходящую через вершину A параллелльно BC . Тогда ось y направим по лучу AP . Через точку A проведём прямую, параллельную высоте DQ тетраэдра. Пусть L – проекция точки D на эту прямую. Тогда ось z направим по лучу AL . Тогда интересующие нас точки имеют следующие координаты: Найдём расстояние между прямыми AK и DM . Заметим, что прямая MP параллельна AK и через пересекающиеся прямые MP и DM проведём плоскость. Поскольку LD || MP , точка L лежит в этой плосктсти. Уравнение плоскости имеет вид Найдём расстояние между прямыми AK и BE . Пусть H – проекция точки B на ось y (рис.1). Тогда плоскость, проходящая через точку E и прямую BH , параллельна прямой AK . Пусть G – проекция точки E на ось z . Тогда EG || BH , поэтому точка G лежит в проведённой плоскости. Уравнение этой плоскости имеет вид Найдём угол α между прямыми DM и AK . Для этого через точку Q проведём прямую, параллельную DM (рис.3). Пусть эта прямая пересекает ребро CD в точке S . Тогда искомый угол равен углу между пересекающимися прямыми QS и AK . Из подобия треугольников QSC и MDC находим, что Кроме того, CS= Значит, Тогда sin α = Отсюда находим, что Найдём угол β между прямыми BE и AK (рис.4). Для этого через точку Q проведём прямую, параллельную BE . Эта прямая пересекает ребро среднюю линию ER треугольника ADC в точке T . Тогда искомый угол равен углу между пересекающимися прямыми QT и AK . Из подобия треугольников QTR и BER находим, что Кроме того, если точка J делит ребро CD в отношении Поэтому AT2= Значит, sin β = Отсюда находим, что Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке