ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 87389
Темы:    [ Свойства сечений ]
[ Усеченная пирамида ]
Сложность: 4
Классы: 10,11
В корзину
Прислать комментарий

Условие

В четырёхугольной пирамиде SABCD основание ABCD имеет своей осью симметрии диагональ AC , другая диагональ BD основания равна 5, а точка E пересечения этих диагоналей делит отрезок AC так, что отношение отрезка AE к отрезку EC равно 3. Через некоторую точку бокового ребра пирамиды SABCD проведена плоскость, параллельная основанию и пересекающая боковые рёбра SA , SB , SC , SD соответственно в точках A1 , B1 , C1 , D1 . Получившийся многогранник ABCDA1B1C1D1 , являющийся частью пирамиды SABCD , пересекается плоскостью α по правильному шестиугольнику. Найдите площадь этого шестиугольника, если плоскость α пересекает отрезки BB1 и DD1 .

Ответ

6 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
неизвестно
Номер 7884

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .