Страница: 1
2 >> [Всего задач: 9]
|
|
Сложность: 5+ Классы: 10,11
|
В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что
$$
R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2).
$$
|
|
Сложность: 3 Классы: 10,11
|
В правильной усеченной четырехугольной пирамиде высота равна
2, а стороны оснований равны 3 и 5. Найдите диагональ усеченной
пирамиды.
|
|
Сложность: 3 Классы: 10,11
|
В правильной четырёхугольной усечённой пирамиде середина N ребра B1C1 верхней грани A1B1C1D1 соединена с серединой M ребра AB нижней грани ABCD. Прямые B1C1 и AB не лежат в одной плоскости. Докажите, что проекции рёбер B1C1 и AB
на прямую MN равны между собой.
|
|
Сложность: 3+ Классы: 10,11
|
Придумайте многогранник, у которого нет трех граней с одинаковым числом
сторон.
|
|
Сложность: 4 Классы: 10,11
|
В четырёхугольной пирамиде
SABCD основание
ABCD имеет своей
осью симметрии диагональ
AC , которая равна 9, а точка
E
пересечения диагоналей четырёхугольника
ABCD делит отрезок
AC
так, что отрезок
AE меньше отрезка
EC . Через середину
бокового ребра пирамиды
SABCD проведена плоскость, параллельная
основанию и пересекающаяся с рёбрами
SA ,
SB ,
SC ,
SD соответственно
в точках
A1
,
B1
,
C1
,
D1
. Получившийся многогранник
ABCDA1
B1
C1
D1
, являющийся частью пирамиды
SABCD , пересекается
с плоскостью
α по правильному шестиугольнику, со стороной
2. Найдите площадь треугольника
ABD , если плоскость
α
пересекает отрезки
BB1
и
DD1
.
Страница: 1
2 >> [Всего задач: 9]