ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 87626
Условие
На рёбрах AB , BC , CD , DA , BD и AC пирамиды ABCD взяты точки
K , L , M , P , N и Q соответственно. Постройте прямую, по которой
пересекаются плоскости KLM и PNQ .
РешениеПредположим, что прямые ML и BD пересекаются в точке E , прямые EK и AD – в точке T , прямые TM и PQ – в точке F1 . Тогда F1 – общая точка плоскостей KLM и PNQ . Предположим, что прямые PN и AB пересекаются в точке G , прямые GQ и BC – в точке H , а прямые NH и ML – в точке F2 . Тогда F2 – также общая точка плоскостей KLM и PNQ . Следовательно, F1F2 – искомая прямая. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке