Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Некоторый треугольник можно вырезать из бумажной полоски единичной ширины, а из любой полоски меньшей ширины его вырезать нельзя. Какую площадь может иметь этот треугольник?

Вниз   Решение


Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)

ВверхВниз   Решение


Положительные рациональные числа a и b записаны в виде десятичных дробей, у каждой из которых минимальный период состоит из 30 цифр. У десятичной записи числа  a – b  длина минимального периода равна 15. При каком наименьшем натуральном k длина минимального периода десятичной записи числа  a + kb  может также оказаться равной 15?

ВверхВниз   Решение


Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.

Вверх   Решение

Задача 88293
Темы:    [ Произведения и факториалы ]
[ Неравенство Коши ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.


Решение

  Рассмотрим произведение чисел, равноотстоящих от концов, то есть (150 + k)(150 − k) = 150² − k² < 150².  Это неравенство верно для любого натурального k от 1 до 50. Значит, заменив числа  150 − k  и  150 + k  на 150, мы увеличим произведение.
  Для суммы чисел, равноотстоящих от концов,  (150 + k) + (150 − k) = 2·150.  Значит, сумма при замене не изменится.

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 4
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
задача
Номер 4.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .